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Wind statistics
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Fastest growing new energy source

600 GW by 2018, 6% of the global electricity
demand

97 GW by 2019, 7% of the U.S. electricity
demand

DOE set goal of 20% of U.S. energy from wind
by 2030

Distributed wind turbines (<1 Mw) are an
attractive but under recognized means to meet
this goal
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Conventional wind turbine

DFIG

Two or three stages of
planetary or parallel
shaft gear train

Three actuators: yaw
motor, pitch motor &
generator

Synchronous or
asynchronous generator

Transformer

Grid
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AC DC
DC AC

Power converter
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Conventional wind turbine

Electrical System

Electronic Control
Sensors
Hydraulic System
Yaw System
Rotor Blades
Mechanical Brake

Rotor Hub

—) Gearbox
—) Generator

Supporting Structure /Housing

— Drive Train

1 0,75 05 0,25 0 2 4 6 ]
Annual failure frequency [-] Down time per failure [days]
WES100 Failure frequency and downtimes of components

GEARBOX

Brand Siemens (Flender)
Number of stages 2

Weight 820kg (incl. oil)
Ratio 0.055555555555556

Conventional drivetrain are bulky, heavy and
not reliable.

* http://www.reliawind.eu/

* C Ensslin, M Durstewitz, B Hahn, B Lange, K Rohrig (2005) German Wind Energy Report 2005. ISET, Kassel




Potential of HST wind turbine
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Hydrostatic wind turbine

L Hydrostatic transmission (HST)
Performance Objective

O Simple system structure

0 Continuous variable transmission ratio

0 No need of power converter

O All power transmitted through a fluid link;
hence less stiff

O Improves reliability and reduce cost

0 Maximize power capture
O Minimize loads

0 Reduce downtime

0 Reduce maintenance cost




Power regenerative test platform

55 kW

___________________________

» Components

| Pump and Motor

‘ » Transmission

: Speed down transmission (HSD)

Speed up transmission (HST)
» Fluid Testing

Independent hydraulic circuit for
HSD and HST with temperature

_________________________________

Hydrostatic Drive

Hydrostatic Transmission
(HST) (HSD)

Rotor

» To Investigate the performance of hydrostatic transmission
»To test the advanced control algorithm
1. Capable of simulating a turbine output power of 100 kW

2. Small electric motor (55kW) to compensate for losses in the components



Power regenerative test platform
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Dynamics of the test platform

High Speed Shaft: «, = ]i[—bgoos + aDmP + T, — yDpqPy]

Hydrostatic VFD : HSD

stat _ Hydrostatic
Transmissio Turbine Drive
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Experimental Validation

» Experimental set up: -
* HS Shaft Speed (w,):=1000 rpm
« HST Pressure (P) = 100 bar

Simulation
Experiment

« HSD Swash angle (a): Step of 4-
6-7-6-4 volts

> At steady state, experimental
results matches with simulation with
maximum steady state error is 2
RPM.

Rotor Speed (rpm)

> In transient case, the
experimental data has slower . - 2
response than the simulation.

» Because, swash plate dynamics is
not included in simulation.




RGA An al yS | S T, Variable Frequency Drive Wy

vy HSD Pump Swash Voltage P, ¢y P
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The coupling is ill conditioned The coupling is diagonal




Decentralized Control Architecture

Pressure Ref _
HSD Swash
> Cl(s) Dynamics N Plant.
> C2(s) |, | HSTSwash Dynamics |
Rotor speed Dynamics Rotor
Ref Controller Actuator Speed

W; ref

p
Pd_ref | Pressure
Controller
\\ J

DAQ inputs r \
(Measurement P[ Filter ] Wr Ref CSpeelclj
S) J Pd_meas . ontroller )

Wr_meas
Ws_meas




Sensitivity Analysis

HSD Pressure .
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Experimental Results: Speed
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Experimental Results: Pressure
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Wind Turbine Control

Region1l Region2 Region 3 Region 4
« E | . ] ° MIax. Power
our control regions: c - Wind
— Region 1: Standby mode — Rated Power
: . = 4
— Region 2: Control to maximize power s
— Region 3: Control to rated power g 3
— Region 4: Turbine shut down 92 -
1 _
« Steady wind assumed 0 - . . | |
0 5 10 15 20 25 30

Cut-In Wind Speed (m/s) Cut-Out
 According to Betz Law, the maximum
energy that can be captured by the rotor is
59.3% of the kinetic energy of the wind
— Best turbines nowadays harvest up to 45%
— There is room for improvement!
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Dynamic Pitching Objective

Understanding the interaction of unsteady wind and the

transient response of blade pitching with the aim of improving
energy capture from wind turbines }

|

How?

GATHERING ALL TOGETHER AND FINDING THE MODEL

DESIGNING THE EXPERIMENTS

- Different size '
u cylinders Dynamic change
of B

:O%C‘

Steady wind Unsteady wind

C. SIMULATIONS WIND TUNNEL EXPERIMENTS (




CFD Simulations sy snrone:

M 5.364e+001

3.972e+001

Dynamic pitching simulations using

2.579e+001 /""

ANSYS .
« Steady state data in good immm —
correlation with published data )
2 ‘ . - 5
15 :
| 50% improvement in max lift coefficient
| for the dynamically pitched blade with
G 05 respect to steady state

Where k = ‘:—‘f Is the reduced

—k=0000143 frequency
—k =0.0014 . d
o5/ =oo1 |+ rate of rotation (-—)
—k =0.0129 S
| | | |- C=Skady stk e (C chord length (m)
110 0 0 2 30 40 .V wind speed (?)
(87

J. G. Holierhoek, J. B. de Vaal, A. H. van Zuijlen, and H. Bijl, “Comparing different dynamic stall models,” Wind ENERGY, vol. 16, m

pp. 139-158, 2013



Wind Tunnel Experiments

« Recreate real-life conditions at SAFL Wind Tunnel
« Using a DU96-W-180 airfoil (commonly used in Wind Turbines)
« High Reynolds numbers (10°) | §#490 %00

— Higher wind speeds (25—
’ P (255) 1.33x 106 |
— Smaller chord (~1 m)

O 05-
1. Test Scction 16x1.7x1.8m, V, , =45 m/s
2. Test Scction 18.3x244x244m, V_ =19 m/s
3
4,
g ol --Re = 0.66 x 10°
-{-Re =0.99 x 10°
Re=1.33x10°
=¥=Published Re = 1.0 x 10°

-=-Published Re = 1.5 x 10°

-0.5— : :
-5 0 5 10 15 20
o

« Good correlation between
experimental and published data
for steady state experiments




Controls

Wind Estimator/ . k.ao,@ | @B, _ Pitch
> > pt Controller > :

Measurement Optimization a, = B, Dynamics
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Hydrostatic transmission
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|
| torque ressure -
| d Torque/ | P v
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- K" law —» pressure —>®—>
) controller
conversion




Conclusions

» A unique power regenerative test platform has been built at the
University of Minnesota to demonstrate and validate the performance
of the HST. It also allows us to test different components and fluids.

» The high fidelity dynamic model closely matches the experiment
data. The dynamic model will help us develop more efficient and
robust controllers.

» Real time controller has been implemented on regenerative testbed.

» An HST transmission is a variable ratio, reliable, and cost effective
alternative to a fixed ratio mechanical gearbox.

» Dynamics of pitch control on transient wind will be faster than the
standard torque control. Faster pitch control can be achieved by using
hydraulic actuators.

» Superposition of 2 controllers will improve the power capture in
unsteady wind but coupling between the 2 dynamics needs to be
studied
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